Attenzione! Per visualizzare al meglio il sito e usufruire di tutte le funzionalità messe a disposizione
si consiglia di aggiornare la versione in uso di Internet Explorer alla versione 8 o superiore. Grazie!

La rete delle conoscenze nefrologiche

Home > In Depth Review

Pubblicato il 31 ottobre 2013

Fisiopatologia e diagnosi della sindrome cardio-renale: stato dell’arte e prospettive future

Fisiopatologia e diagnosi della sindrome cardio-renale

Pathophysiology of Cardio-renal Syndrome

Fisiopatologia e diagnosi della sindrome cardio-renale: stato dell’arte e prospettive future

Pathophysiology and Diagnosis of Cardio-renal Syndrome: Actual Picture and Future Prospectives

Luca Di Lullo1, Fulvio Floccari2, Antonio De Pascalis3, Annibale Marinelli 4, Vincenzo Barbera1, Alberto Santoboni1, Moreno Malaguti2, Alessandro Balducci5, Domenico Russo6, Rodolfo Rivera7, Antonio Gorini8, Claudio Ronco9

(1) UOC Nefrologia e Dialisi, Ospedale “L. Parodi, Delfino”, Colleferro
(2) UOC Nefrologia e Dialisi, Ospedale “San Paolo”, Civitavecchia
(3) UOC Nefrologia, Dialisi e Trapianto, Ospedale “V. Fazzi”, Lecce
(4) UOC Nefrologia e Dialisi “Ospedali Riuniti”, Anzio
(5) UOC Nefrologia e Dialisi, Azienda Ospedaliera “San Giovanni, Addolorata”, Roma
(6) Dipartimento di Nefrologia, Università degli Studi Federico II, Napoli
(7) Divisione di Nefrologia, Ospedale “San Gerardo”, Monza
(8) Consultant Nephrologist, Roma
(9) International Renal Research Institute, Ospedale “San Bortolo”, Vicenza
A cura del Gruppo di Studio di Cardionefrologia dellaSocietà Italiana di Nefrologia

Abstract

Con il termine di Sindrome Cardio-Renale (SCR) vengono evidenziate le strette correlazioni clinico-patologiche tra malattia renale ed interessamento cardiovascolare. La classificazione più recente permette di individuare cinque tipologie di sindrome cardio-renale, delle quali le SCR di Tipo I e di Tipo II riconoscono come primum movens lo scompenso cardiaco (acuto o cronico), mentre la SCR di Tipo III e la SCR di Tipo IV riconoscono come causa iniziale un danno di tipo renale. La SCR di Tipo V è, invece, correlata ad un ampio spettro di patologie secondarie (in primis collagenopatie).

La diagnosi di SCR si basa sia su dosaggi di laboratorio, sia su tecniche, come quelle ultrasonografiche, di diagnostica per immagini di I° livello. Oltre ai consueti dosaggi dei parametri di funzionalità renale e cardiaca, diversi nuovi biomarcatori sono stati testati per valutare il grado di funzionalità renale e cardiaca.

L’ecografia renale e l’ecocardiografia trans-toracica sono in grado di integrare le informazioni ottenute con il dosaggio dei parametri di laboratorio ed offrire un quadro di natura non solo funzionale, ma anche di tipo anatomico del coinvolgimento renale e cardiaco.

Abstract

The cardio–renal syndrome (CRS) indicates how close the relationship is between heart and kidney during failure of these organs. At present, the classification of the syndrome includes five types of CRS: types I and II which are strictly related to initial heart failure (both acute and chronic), types III and IV which include initial kidney failure, and type V which includes several systemic diseases. Many pathophysiological pathways have been described illustrating how heart and kidney disease are involved in clinical conditions.

The diagnosis of CRS is based on both blood tests and ultrasound imaging. Several biomarkers indicating levels of heart and kidney function have emerged over the last few decades which can be used to predict kidney failure in patients with acute or chronic heart disease. Kidney injury biomarkers have also to be tested, especially those indicating glomerular and tubular damage.

Renal ultrasound and trans-thoracic echocardiography can provide further information on heart and kidney failure in patients with cardio-renal syndrome at any stage.

Tabella 1. Classificazione delle Sindromi Cardio-Renali.
TipoDenominazioneDescrizioneEsempio
1 Cardiorenale acuta Insufficienza cardiaca acuta che conduce ad IRA Sindrome coronarica acuta che porta ad scompenso cardiaco acuto ed insufficienza renale
2 Cardiorenale cronica Scompenso cardiaco cronico che conduce ad insufficienza renale Scompenso cardiaco cronico
3 Nefrocardiaca acuta IRA che conduce ad insufficienza cardiaca acuta Cardiomiopatia uremica secondaria ad IRA
4 Nefrocardiaca cronica IRC che conduce ad insufficienza cardiaca Ipertrofia ventricolare sinistra e scompenso cardiaco diastolico secondari ad insufficienza renale
5 Secondaria Patologie sistemiche che comportano insufficienza cardiaca ed insufficienza renale Shock settico, vasculiti, diabete mellito
×
Tabella 2. Principali cause di insufficienza renale acuta in grado di causare la SCR di tipo 3.
Prototypical Condition
Contrast-induced AKI Post-inflammatory GN
Drug-induced AKI Rhabdomyolysis
Major surgery Acute pyelonephritis
Cardiac surgery Post-obstructive uropathy
×
Tabella 3. Fattori di rischio individuali per lo sviluppo di SCR di tipo 3.
Risk Modifying Factors
Age Congestive heart failure
Sex Pulmonary disease
Coronary artery disease Chronic kidney disease
Hypertension Systemic vascular disease
Hypercholesterolemia Systemic immune disease
Diabetes mellitus Infection/sepsis
×
Tabella 4. Fattori di rischio e correlazioni diagnostico-terapeutiche in corso di SCR di tipo 5 sepsi-correlata.
Caratteristiche del pazientePercorso Terapeutico
Evento scatenante e risposta immunitaria Rianimazione
  • Effetto della volemia sull’edema dei tessuti e sull’ ipertensione venosa renale
  • Sindrome compartimentale addominale
  • Rimaneggiamento delle proteine del glicocalice
Patologia di base (cardiaca e renale) Ricerca del focus patologico primitivo
  • Impiego di mezzo di contrasto
Risposte fisiologiche
  • Vasodilatazione periferica
  • Risposta ormonale compensatoria
  • Aumentata permeabilità vascolare
  • Disfunzione mitocondriale ed ipossia tissutale
  • Riempimento cardiaco
  • Ipoperfusione renale
 
Dosaggio dei farmaci
  • Antibiotici
  • Sedativi
  • Vasopressori ed inotropi
 
  Terapia di supporto
  • Liquidi
  • Inotropi, vasopressori
  Terapie specifiche
  • Ventilazione meccanica
  • Chirurgia
  • Terapia sostitutiva della funzione renale
 
×
Tabella 5. Diagnosi differenziale tra SCR di tipo 5 ad evoluzione acuta e SCR di tipo 5 ad evoluzione cronica.
CaratteristicheSCR-5 Acuta (Sepsi)SCR-5 Cronica (Cirrosi)
Tempo necessario per il deficit organo/tessuto specifico Breve: da ore a giorni Prolungato: da settimane a mesi
Funzionalità d’organo (cuore/rene) Si può sovrapporre ad una preesistente patologia renale e/o cardiaca Cuore e rene mettono in atto risposte adattative che falliscono nel lungo periodo
Sequenza temporale nel coinvolgimento di cuore e rene L’interessamento cardio-renale è simultaneo ovvero differisce di poche ore La disfunzione di uno dei due organi precede nettamente quella dell’altro
Patologia di base Si tratta di una patologia sistemica che conduce allo sviluppo di una SCR-5   Si possono verificare alcuni eventi clinici in grado di far precipitare acutamente un quadro cronico (ad es, un sanguinamento del tratto gastrointestinale può far precipitare una condizione di sindrome epato-renale)
Fisiopatologia Effetti diretti a carico di cuore e rene Fallimento a lungo termine dei meccanismi adattativi
Percorsi fisiopatologici Determinati dalla patologia di base Determinati dai processi adattativi
Reversibilità del quadro clinico Possibile in caso di controllo del processo settico ed adeguato supporto degli organi coinvolti   Limitata finchè non si arriva alla sostituzione dell’organo interessata dalla patologia scatenante la SCR-5 (ad es, trapianto di fegato)
×

BibliografiaReferences

[1] Ronco C The Cardiorenal Syndrome: Basis and Common Ground for a Multidisciplinary Patient-Oriented Therapy. Cardiorenal medicine 2011 Jan;1(1):3-4

[2] Bagshaw SM, Cruz DN, Aspromonte N et al. Epidemiology of cardio-renal syndromes: workgroup statements from the 7th ADQI Consensus Conference. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2010 May;25(5):1406-16 (full text)

[3] Damman K, Navis G, Voors AA et al. Worsening renal function and prognosis in heart failure: systematic review and meta-analysis. Journal of cardiac failure 2007 Oct;13(8):599-608

[4] McCullough PA Cardiorenal syndromes: pathophysiology to prevention. International journal of nephrology 2010 Dec 1;2011:762590 (full text)

[5] Ronco C Cardiorenal syndromes: definition and classification. Contributions to nephrology 2010;164:33-8

[6] Eren Z, Ozveren O, Buvukoner E et al. A Single-Centre Study of Acute Cardiorenal Syndrome: Incidence, Risk Factors and Consequences. Cardiorenal medicine 2012 Aug;2(3):168-176 (full text)

[7] Hanada S, Takewa Y, Mizuno T et al. Effect of the technique for assisting renal blood circulation on ischemic kidney in acute cardiorenal syndrome. Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs 2012 Jun;15(2):140-5

[8] Stevenson LW, Perloff JK The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA : the journal of the American Medical Association 1989 Feb 10;261(6):884-8

[9] Braam B, Cupples WA, Joles JA et al. Systemic arterial and venous determinants of renal hemodynamics in congestive heart failure. Heart failure reviews 2012 Mar;17(2):161-75

[10] de Silva R, Loh H, Rigby AS et al. Epidemiology, associated factors, and prognostic outcomes of renal artery stenosis in chronic heart failure assessed by magnetic resonance angiography. The American journal of cardiology 2007 Jul 15;100(2):273-9

[11] Mullens W, Abrahams Z, Francis GS et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. Journal of the American College of Cardiology 2009 Feb 17;53(7):589-96

[12] Machnik A, Neuhofer W, Jantsch J et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nature medicine 2009 May;15(5):545-52

[13] Virzì GM, Torregrossa R, Cruz DN et al. Cardiorenal Syndrome Type 1 May Be Immunologically Mediated: A Pilot Evaluation of Monocyte Apoptosis. Cardiorenal medicine 2012 Feb;2(1):33-42 (full text)

[14] Kraut EJ, Chen S, Hubbard NE et al. Tumor necrosis factor depresses myocardial contractility in endotoxemic swine. The Journal of trauma 1999 May;46(5):900-6

[15] van Sloten TT, Pijpers E, Stehouwer CD et al. Metformin-associated lactic acidosis in a patient with normal kidney function. Diabetes research and clinical practice 2012 Jun;96(3):e57-8

[16] Arroyo D, Melero R, Panizo N et al. Metformin-associated acute kidney injury and lactic acidosis. International journal of nephrology 2011;2011:749653 (full text)

[17] Xu G, Ahn J, Chang S et al. Lipocalin-2 induces cardiomyocyte apoptosis by increasing intracellular iron accumulation. The Journal of biological chemistry 2012 Feb 10;287(7):4808-17 (full text)

[18] Prowle JR, Liu YL, Licari E et al. Oliguria as predictive biomarker of acute kidney injury in critically ill patients. Critical care (London, England) 2011 Jul 19;15(4):R172 (full text)

[19] McDonagh TA, Komajda M, Maggioni AP et al. Clinical trials in acute heart failure: simpler solutions to complex problems. Consensus document arising from a European Society of Cardiology cardiovascular round-table think tank on acute heart failure, 12 May 2009. European journal of heart failure 2011 Dec;13(12):1253-60

[20] Prowle JR, Echeverri JE, Ligabo EV et al. Fluid balance and acute kidney injury. Nature reviews. Nephrology 2010 Feb;6(2):107-15

[21] Latouche C, El Moghrabi S, Messaoudi S et al. Neutrophil gelatinase-associated lipocalin is a novel mineralocorticoid target in the cardiovascular system. Hypertension 2012 May;59(5):966-72 (full text)

[22] Maisel A, Xue Y, Shah K et al. Increased 90-day mortality in patients with acute heart failure with elevated copeptin: secondary results from the Biomarkers in Acute Heart Failure (BACH) study. Circulation. Heart failure 2011 Sep;4(5):613-20 (full text)

[23] Shah RV, Truong QA, Gaggin HK et al. Mid-regional pro-atrial natriuretic peptide and pro-adrenomedullin testing for the diagnostic and prognostic evaluation of patients with acute dyspnoea. European heart journal 2012 Sep;33(17):2197-205 (full text)

[24] Maisel AS, Katz N, Hillege HL et al. Biomarkers in kidney and heart disease. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2011 Jan;26(1):62-74 (full text)

[25] Aldous SJ, Richards AM, Troughton R et al. ST2 has diagnostic and prognostic utility for all-cause mortality and heart failure in patients presenting to the emergency department with chest pain. Journal of cardiac failure 2012 Apr;18(4):304-10

[26] Boisot S, Beede J, Isakson S et al. Serial sampling of ST2 predicts 90-day mortality following destabilized heart failure. Journal of cardiac failure 2008 Nov;14(9):732-8

[27] Tojo A, Gross SS, Zhang L et al. Immunocytochemical localization of distinct isoforms of nitric oxide synthase in the juxtaglomerular apparatus of normal rat kidney. Journal of the American Society of Nephrology : JASN 1994 Jan;4(7):1438-47 (full text)

[28] Singh P, Okusa MD The role of tubuloglomerular feedback in the pathogenesis of acute kidney injury. Contributions to nephrology 2011;174:12-21

[29] Campbell CY, Clarke W, Park H et al. Usefulness of cystatin C and prognosis following admission for acute heart failure. The American journal of cardiology 2009 Aug 1;104(3):389-92

[30] Lassus JP, Nieminen MS, Peuhkurinen K et al. Markers of renal function and acute kidney injury in acute heart failure: definitions and impact on outcomes of the cardiorenal syndrome. European heart journal 2010 Nov;31(22):2791-8 (full text)

[31] Cruz DN, Gaiao S, Maisel A et al. Neutrophil gelatinase-associated lipocalin as a biomarker of cardiovascular disease: a systematic review. Clinical chemistry and laboratory medicine : CCLM / FESCC 2012;50(9):1533-45

[32] Alvelos M, Lourenço P, Dias C et al. Prognostic value of neutrophil gelatinase-associated lipocalin in acute heart failure. International journal of cardiology 2013 Apr 30;165(1):51-5

[33] Maisel AS, Mueller C, Fitzgerald R et al. Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: the NGAL EvaLuation Along with B-type NaTriuretic Peptide in acutely decompensated heart failure (GALLANT) trial. European journal of heart failure 2011 Aug;13(8):846-51

[34] Alvelos M, Pimentel R, Pinho E et al. Neutrophil gelatinase-associated lipocalin in the diagnosis of type 1 cardio-renal syndrome in the general ward. Clinical journal of the American Society of Nephrology : CJASN 2011 Mar;6(3):476-81 (full text)

[35] Aghel A, Shrestha K, Mullens W et al. Serum neutrophil gelatinase-associated lipocalin (NGAL) in predicting worsening renal function in acute decompensated heart failure. Journal of cardiac failure 2010 Jan;16(1):49-54

[36] Collins SP, Hart KW, Lindsell CJ et al. Elevated urinary neutrophil gelatinase-associated lipocalcin after acute heart failure treatment is associated with worsening renal function and adverse events. European journal of heart failure 2012 Sep;14(9):1020-9

[37] Valente MA, Damman K, Dunselman PH et al. Urinary proteins in heart failure. Progress in cardiovascular diseases 2012 Jul-Aug;55(1):44-55

[38] Di Somma S, De Berardinis B, Bongiovanni C et al. Use of BNP and bioimpedance to drive therapy in heart failure patients. Congestive heart failure (Greenwich, Conn.) 2010 Jul;16 Suppl 1:S56-61

[39] Parrinello G, Paterna S, Di Pasquale P et al. The usefulness of bioelectrical impedance analysis in differentiating dyspnea due to decompensated heart failure. Journal of cardiac failure 2008 Oct;14(8):676-86

[40] Milzman D, Napoli A, Hogan C et al. Thoracic impedance vs chest radiograph to diagnose acute pulmonary edema in the ED. The American journal of emergency medicine 2009 Sep;27(7):770-5

[41] Di Lullo L, Floccari F, Granata A et al. Ultrasonography: Ariadne's Thread in the Diagnosis of the Cardiorenal Syndrome. Cardiorenal medicine 2012 Feb;2(1):11-17

[42] Heywood JT, Fonarow GC, Costanzo MR et al. High prevalence of renal dysfunction and its impact on outcome in 118,465 patients hospitalized with acute decompensated heart failure: a report from the ADHERE database. Journal of cardiac failure 2007 Aug;13(6):422-30

[43] Hebert K, Dias A, Delgado MC et al. Epidemiology and survival of the five stages of chronic kidney disease in a systolic heart failure population. European journal of heart failure 2010 Aug;12(8):861-5

[44] Cruz DN, Bagshaw SM Heart-kidney interaction: epidemiology of cardiorenal syndromes. International journal of nephrology 2010 Dec 29;2011:351291 (full text)

[45] Cruz DN, Schmidt-Ott KM, Vescovo G et al. Pathophysiology of cardiorenal syndrome type 2 in stable chronic heart failure: workgroup statements from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contributions to nephrology 2013;182:117-36 (full text)

[46] Setoguchi S, Stevenson LW, Schneeweiss S et al. Repeated hospitalizations predict mortality in the community population with heart failure. American heart journal 2007 Aug;154(2):260-6

[47] Tanaka K, Ito M, Kodama M et al. Longitudinal change in renal function in patients with idiopathic dilated cardiomyopathy without renal insufficiency at initial diagnosis. Circulation journal : official journal of the Japanese Circulation Society 2007 Dec;71(12):1927-31 (full text)

[48] Bongartz LG, Cramer MJ, Doevendans PA et al. The severe cardiorenal syndrome: 'Guyton revisited'. European heart journal 2005 Jan;26(1):11-7 (full text)

[49] MERRILL AJ, MORRISON JL, BRANNO ES et al. Concentration of renin in renal venous blood in patients with chronic heart failure. The American journal of medicine 1946 Nov;1(5):468

[50] Kishimoto T, Maekawa M, Abe Y et al. Intrarenal distribution of blood flow and renin release during renal venous pressure elevation. Kidney international 1973 Oct;4(4):259-66

[51] Remuzzi G, Cattaneo D, Perico N et al. The aggravating mechanisms of aldosterone on kidney fibrosis. Journal of the American Society of Nephrology : JASN 2008 Aug;19(8):1459-62 (full text)

[52] Onozato ML, Tojo A, Kobayashi N et al. Dual blockade of aldosterone and angiotensin II additively suppresses TGF-beta and NADPH oxidase in the hypertensive kidney. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2007 May;22(5):1314-22 (full text)

[53] Colombo PC, Ganda A, Lin J et al. Inflammatory activation: cardiac, renal, and cardio-renal interactions in patients with the cardiorenal syndrome. Heart failure reviews 2012 Mar;17(2):177-90

[54] Colombo PC, Onat D, Sabbah HN et al. Acute heart failure as "acute endothelitis"--Interaction of fluid overload and endothelial dysfunction. European journal of heart failure 2008 Feb;10(2):170-5

[55] Hillege HL, Nitsch D, Pfeffer MA et al. Renal function as a predictor of outcome in a broad spectrum of patients with heart failure. Circulation 2006 Feb 7;113(5):671-8 (full text)

[56] Halbesma N, Jansen DF, Heymans MW et al. Development and validation of a general population renal risk score. Clinical journal of the American Society of Nephrology : CJASN 2011 Jul;6(7):1731-8 (full text)

[57] Tangri N, Stevens LA, Griffith J et al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA : the journal of the American Medical Association 2011 Apr 20;305(15):1553-9

[58] Khan NA, Ma I, Thompson CR et al. Kidney function and mortality among patients with left ventricular systolic dysfunction. Journal of the American Society of Nephrology : JASN 2006 Jan;17(1):244-53 (full text)

[59] Cruz DN, Fard A, Clementi A et al. Role of biomarkers in the diagnosis and management of cardio-renal syndromes. Seminars in nephrology 2012 Jan;32(1):79-92

[60] Tang WH, Van Lente F, Shrestha K et al. Impact of myocardial function on cystatin C measurements in chronic systolic heart failure. Journal of cardiac failure 2008 Jun;14(5):394-9

[61] Damman K, van Veldhuisen DJ, Navis G et al. Urinary neutrophil gelatinase associated lipocalin (NGAL), a marker of tubular damage, is increased in patients with chronic heart failure. European journal of heart failure 2008 Oct;10(10):997-1000

[62] Bolignano D, Basile G, Parisi P et al. Increased plasma neutrophil gelatinase-associated lipocalin levels predict mortality in elderly patients with chronic heart failure. Rejuvenation research 2009 Feb;12(1):7-14

[63] Shrestha K, Borowski AG, Troughton RW et al. Renal dysfunction is a stronger determinant of systemic neutrophil gelatinase-associated lipocalin levels than myocardial dysfunction in systolic heart failure. Journal of cardiac failure 2011 Jun;17(6):472-8

[64] Jungbauer CG, Birner C, Jung B et al. Kidney injury molecule-1 and N-acetyl-?-D-glucosaminidase in chronic heart failure: possible biomarkers of cardiorenal syndrome. European journal of heart failure 2011 Oct;13(10):1104-10

[65] Yap SC, Lee HT Acute kidney injury and extrarenal organ dysfunction: new concepts and experimental evidence. Anesthesiology 2012 May;116(5):1139-48 (full text)

[66] Prabhu SD Cytokine-induced modulation of cardiac function. Circulation research 2004 Dec 10;95(12):1140-53 (full text)

[67] Kingma JG Jr, Vincent C, Rouleau JR et al. Influence of acute renal failure on coronary vasoregulation in dogs. Journal of the American Society of Nephrology : JASN 2006 May;17(5):1316-24 (full text)

[68] Chuasuwan A, Kellum JA Cardio-renal syndrome type 3: epidemiology, pathophysiology, and treatment. Seminars in nephrology 2012 Jan;32(1):31-9

[69] Grams ME, Rabb H The distant organ effects of acute kidney injury. Kidney international 2012 May;81(10):942-8

[70] Ma XL, Lefer DJ, Lefer AM et al. Coronary endothelial and cardiac protective effects of a monoclonal antibody to intercellular adhesion molecule-1 in myocardial ischemia and reperfusion. Circulation 1992 Sep;86(3):937-46

[71] Blake P, Hasegawa Y, Khosla MC et al. Isolation of "myocardial depressant factor(s)" from the ultrafiltrate of heart failure patients with acute renal failure. ASAIO journal (American Society for Artificial Internal Organs : 1992) 1996 Sep-Oct;42(5):M911-5

[72] Miyano H, Shishido T, Kawada T et al. Acute effect of tumor necrosis factor-alpha is minimal on mechanics but significant on energetics in blood-perfused canine left ventricles. Critical care medicine 1999 Jan;27(1):168-76

[73] Rauchhaus M, Doehner W, Francis DP et al. Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation 2000 Dec 19;102(25):3060-7 (full text)

[74] Kobuchi S, Tanaka R, Shintani T et al. Mechanisms underlying the renoprotective effect of GABA against ischemia/reperfusion-induced renal injury in rats. The Journal of pharmacology and experimental therapeutics 2011 Sep;338(3):767-74 (full text)

[75] Kajstura J, Cigola E, Malhotra A et al. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. Journal of molecular and cellular cardiology 1997 Mar;29(3):859-70

[76] Kelly KJ Distant effects of experimental renal ischemia/reperfusion injury. Journal of the American Society of Nephrology : JASN 2003 Jun;14(6):1549-58 (full text)

[77] Wencker D, Chandra M, Nguyen K et al. A mechanistic role for cardiac myocyte apoptosis in heart failure. The Journal of clinical investigation 2003 May;111(10):1497-504

[78] Liu YH, D'Ambrosio M, Liao TD et al. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. American journal of physiology. Heart and circulatory physiology 2009 Feb;296(2):H404-12 (full text)

[79] National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP, Wheeler AP et al. Comparison of two fluid-management strategies in acute lung injury. The New England journal of medicine 2006 Jun 15;354(24):2564-75 (full text)

[80] Payen D, de Pont AC, Sakr Y et al. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Critical care (London, England) 2008;12(3):R74 (full text)

[81] Davis KL, Laine GA, Geissler HJ et al. Effects of myocardial edema on the development of myocardial interstitial fibrosis. Microcirculation (New York, N.Y. : 1994) 2000 Aug;7(4):269-80

[82] Nazar A, Guevara M, Sitges M et al. LEFT ventricular function assessed by echocardiography in cirrhosis: relationship to systemic hemodynamics and renal dysfunction. Journal of hepatology 2013 Jan;58(1):51-7

[83] Legrand M, Darmon M, Joannidis M et al. Management of renal replacement therapy in ICU patients: an international survey. Intensive care medicine 2013 Jan;39(1):101-8

[84] Nimmo AJ, Than N, Orchard CH et al. The effect of acidosis on beta-adrenergic receptors in ferret cardiac muscle. Experimental physiology 1993 Jan;78(1):95-103 (full text)

[85] Bagshaw SM, Wald R, Barton J et al. Clinical factors associated with initiation of renal replacement therapy in critically ill patients with acute kidney injury-a prospective multicenter observational study. Journal of critical care 2012 Jun;27(3):268-75

[86] Neirynck N, Vanholder R, Schepers E et al. An update on uremic toxins. International urology and nephrology 2013 Feb;45(1):139-50

[87] Licurse A, Kim MC, Dziura J et al. Renal ultrasonography in the evaluation of acute kidney injury: developing a risk stratification framework. Archives of internal medicine 2010 Nov 22;170(21):1900-7

[88] Ozmen CA, Akin D, Bilek SU et al. Ultrasound as a diagnostic tool to differentiate acute from chronic renal failure. Clinical nephrology 2010 Jul;74(1):46-52

[89] Darmon M, Schortgen F, Vargas F et al. Diagnostic accuracy of Doppler renal resistive index for reversibility of acute kidney injury in critically ill patients. Intensive care medicine 2011 Jan;37(1):68-76

[90] Redón J, Cea-Calvo L, Lozano JV et al. Kidney function and cardiovascular disease in the hypertensive population: the ERIC-HTA study. Journal of hypertension 2006 Apr;24(4):663-9

[91] Joki N, Hase H, Nakamura R et al. Onset of coronary artery disease prior to initiation of haemodialysis in patients with end-stage renal disease. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 1997 Apr;12(4):718-23 (full text)

[92] Chonchol M, Whittle J, Desbien A et al. Chronic kidney disease is associated with angiographic coronary artery disease. American journal of nephrology 2008;28(2):354-60

[93] McCullough PA, Agrawal V, Danielewicz E et al. Accelerated atherosclerotic calcification and Monckeberg's sclerosis: a continuum of advanced vascular pathology in chronic kidney disease. Clinical journal of the American Society of Nephrology : CJASN 2008 Nov;3(6):1585-98 (full text)

[94] Gross ML, Meyer HP, Ziebart H et al. Calcification of coronary intima and media: immunohistochemistry, backscatter imaging, and x-ray analysis in renal and nonrenal patients. Clinical journal of the American Society of Nephrology : CJASN 2007 Jan;2(1):121-34 (full text)

[95] Ragosta M, Samady H, Isaacs RB et al. Coronary flow reserve abnormalities in patients with diabetes mellitus who have end-stage renal disease and normal epicardial coronary arteries. American heart journal 2004 Jun;147(6):1017-23

[96] Garland JS, Holden RM, Groome PA et al. Prevalence and associations of coronary artery calcification in patients with stages 3 to 5 CKD without cardiovascular disease. American journal of kidney diseases : the official journal of the National Kidney Foundation 2008 Nov;52(5):849-58

[97] Adragao T, Pires A, Branco P et al. Ankle--brachial index, vascular calcifications and mortality in dialysis patients. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2012 Jan;27(1):318-25

[98] Campean V, Neureiter D, Nonnast-Daniel B et al. CD40-CD154 expression in calcified and non-calcified coronary lesions of patients with chronic renal failure. Atherosclerosis 2007 Jan;190(1):156-66

[99] Laurent S, Cockcroft J, Van Bortel L et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. European heart journal 2006 Nov;27(21):2588-605 (full text)

[100] Foley RN, Parfrey PS, Harnett JD et al. Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney international 1995 Jan;47(1):186-92

[101] McIntyre CW, Burton JO, Selby NM et al. Hemodialysis-induced cardiac dysfunction is associated with an acute reduction in global and segmental myocardial blood flow. Clinical journal of the American Society of Nephrology : CJASN 2008 Jan;3(1):19-26 (full text)

[102] Parfrey PS, Harnett JD, Foley RN et al. Heart failure and ischemic heart disease in chronic uremia. Current opinion in nephrology and hypertension 1995 Mar;4(2):105-10

[103] Bagrov AY, Shapiro JI Endogenous digitalis: pathophysiologic roles and therapeutic applications. Nature clinical practice. Nephrology 2008 Jul;4(7):378-92

[104] Amann K, Breitbach M, Ritz E et al. Myocyte/capillary mismatch in the heart of uremic patients. Journal of the American Society of Nephrology : JASN 1998 Jun;9(6):1018-22 (full text)

[105] Mall G, Huther W, Schneider J et al. Diffuse intermyocardiocytic fibrosis in uraemic patients. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 1990;5(1):39-44

[106] Meert N, Schepers E, De Smet R et al. Inconsistency of reported uremic toxin concentrations. Artificial organs 2007 Aug;31(8):600-11

[107] Miyazaki T, Ise M, Seo H et al. Indoxyl sulfate increases the gene expressions of TGF-beta 1, TIMP-1 and pro-alpha 1(I) collagen in uremic rat kidneys. Kidney international. Supplement 1997 Nov;62:S15-22

[108] Sharma UC, Pokharel S, van Brakel TJ et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation 2004 Nov 9;110(19):3121-8 (full text)

[109] Lin YH, Lin LY, Wu YW et al. The relationship between serum galectin-3 and serum markers of cardiac extracellular matrix turnover in heart failure patients. Clinica chimica acta; international journal of clinical chemistry 2009 Nov;409(1-2):96-9

[110] Faul C, Amaral AP, Oskouei B et al. FGF23 induces left ventricular hypertrophy. The Journal of clinical investigation 2011 Nov;121(11):4393-408

[111] Gutiérrez OM, Januzzi JL, Isakova T et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 2009 May 19;119(19):2545-52 (full text)

[112] Di Lullo L, Floccari F, Santoboni A et al. Progression of cardiac valve calcification and decline of renal function in CKD patients. Journal of nephrology 2013 Jul-Aug;26(4):739-44 (full text)

[113] Di Lullo L, Floccari F, Polito P et al. Right ventricular diastolic function in dialysis patients could be affected by vascular access. Nephron. Clinical practice 2011;118(3):c257-61

[114] Ronco C, McCullough PA, Anker SD et al. Cardiorenal syndromes: an executive summary from the consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contributions to nephrology 2010;165:54-67

[115] Lundy DJ, Trzeciak S Microcirculatory dysfunction in sepsis. Critical care clinics 2009 Oct;25(4):721-31, viii

[116] Trzeciak S, Dellinger RP, Parrillo JE et al. Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Annals of emergency medicine 2007 Jan;49(1):88-98, 98.e1-2

[117] Jardin F, Brun-Ney D, Auvert B et al. Sepsis-related cardiogenic shock. Critical care medicine 1990 Oct;18(10):1055-60

[118] Lambermont B, Ghuysen A, Kolh P et al. Effects of endotoxic shock on right ventricular systolic function and mechanical efficiency. Cardiovascular research 2003 Aug 1;59(2):412-8 (full text)

[119] Parker MM, Shelhamer JH, Bacharach SL et al. Profound but reversible myocardial depression in patients with septic shock. Annals of internal medicine 1984 Apr;100(4):483-90

[120] Dhainaut JF, Huyghebaert MF, Monsallier JF et al. Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 1987 Mar;75(3):533-41

[121] Kumar A, Thota V, Dee L et al. Tumor necrosis factor alpha and interleukin 1beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. The Journal of experimental medicine 1996 Mar 1;183(3):949-58 (full text)

[122] Torre-Amione G, Kapadia S, Benedict C et al. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). Journal of the American College of Cardiology 1996 Apr;27(5):1201-6

[123] Benes J, Chvojka J, Sykora R et al. Searching for mechanisms that matter in early septic acute kidney injury: an experimental study. Critical care (London, England) 2011;15(5):R256 (full text)

[124] Bouglé A, Duranteau J Pathophysiology of sepsis-induced acute kidney injury: the role of global renal blood flow and renal vascular resistance. Contributions to nephrology 2011;174:89-97

[125] Schmidt H, Hoyer D, Hennen R et al. Autonomic dysfunction predicts both 1- and 2-month mortality in middle-aged patients with multiple organ dysfunction syndrome. Critical care medicine 2008 Mar;36(3):967-70

[126] Doerschug KC, Delsing AS, Schmidt GA et al. Renin-angiotensin system activation correlates with microvascular dysfunction in a prospective cohort study of clinical sepsis. Critical care (London, England) 2010;14(1):R24 (full text)

[127] Shen L, Mo H, Cai L et al. Losartan prevents sepsis-induced acute lung injury and decreases activation of nuclear factor kappaB and mitogen-activated protein kinases. Shock (Augusta, Ga.) 2009 May;31(5):500-6

[128] Mortensen EM, Restrepo MI, Copeland LA et al. Impact of previous statin and angiotensin II receptor blocker use on mortality in patients hospitalized with sepsis. Pharmacotherapy 2007 Dec;27(12):1619-26

[129] Soni A, Pepper GM, Wyrwinski PM et al. Adrenal insufficiency occurring during septic shock: incidence, outcome, and relationship to peripheral cytokine levels. The American journal of medicine 1995 Mar;98(3):266-71

[130] Sligl WI, Milner DA Jr, Sundar S et al. Safety and efficacy of corticosteroids for the treatment of septic shock: A systematic review and meta-analysis. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2009 Jul 1;49(1):93-101 (full text)

[131] Burchill L, Velkoska E, Dean RG et al. Acute kidney injury in the rat causes cardiac remodelling and increases angiotensin-converting enzyme 2 expression. Experimental physiology 2008 May;93(5):622-30 (full text)

[132] Tokuyama H, Kelly DJ, Zhang Y et al. Macrophage infiltration and cellular proliferation in the non-ischemic kidney and heart following prolonged unilateral renal ischemia. Nephron. Physiology 2007;106(3):p54-62

[133] Celes MR, Prado CM, Rossi MA et al. Sepsis: going to the heart of the matter. Pathobiology : journal of immunopathology, molecular and cellular biology 2013;80(2):70-86 (full text)

[134] Stengl M, Bartak F, Sykora R et al. Reduced L-type calcium current in ventricular myocytes from pigs with hyperdynamic septic shock. Critical care medicine 2010 Feb;38(2):579-87

[135] Good DW, George T, Watts BA 3rd et al. Toll-like receptor 2 mediates inhibition of HCO(3)(-) absorption by bacterial lipoprotein in medullary thick ascending limb. American journal of physiology. Renal physiology 2010 Sep;299(3):F536-44 (full text)

[136] Schreiber A, Theilig F, Schweda F et al. Acute endotoxemia in mice induces downregulation of megalin and cubilin in the kidney. Kidney international 2012 Jul;82(1):53-9

[137] Reinhart K, Bauer M, Riedemann NC et al. New approaches to sepsis: molecular diagnostics and biomarkers. Clinical microbiology reviews 2012 Oct;25(4):609-34 (full text)

[138] Dellinger RP, Levy MM, Carlet JM et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Critical care medicine 2008 Jan;36(1):296-327

[139] Vignon P, Frank MB, Lesage J et al. Hand-held echocardiography with Doppler capability for the assessment of critically-ill patients: is it reliable? Intensive care medicine 2004 Apr;30(4):718-23

[140] Bellomo R, Ronco C, Kellum JA et al. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Critical care (London, England) 2004 Aug;8(4):R204-12 (full text)

[141] Mehta RL, Kellum JA, Shah SV et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Critical care (London, England) 2007;11(2):R31 (full text)

[142] KDIGO Clinical Practice Guideline for Acute Kidney Injury: Summary of Recommendation Statements. Kidney international, 2012. Suppl. 2(1): p. 8-12.

[143] Haase M, Müller C, Damman K et al. Pathogenesis of cardiorenal syndrome type 1 in acute decompensated heart failure: workgroup statements from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contributions to nephrology 2013;182:99-116 (full text)

[144] Bagshaw SM, Hoste EA, Braam B et al. Cardiorenal syndrome type 3: pathophysiologic and epidemiologic considerations. Contributions to nephrology 2013;182:137-57 (full text)

[145] Mehta RL, Rabb H, Shaw AD et al. Cardiorenal syndrome type 5: clinical presentation, pathophysiology and management strategies from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contributions to nephrology 2013;182:174-94 (full text)

Per visualizzare l'intero documento devi essere registrato e aver eseguito la con utente e password.

Versione PDF
Per visualizzare l'intero documento devi essere registrato e aver eseguito la con utente e password.
Contenuti articolo
    release  1
    pubblicata il  31 ottobre 2013 
    Da

    Luca Di Lullo1, Fulvio Floccari2, Antonio De Pascalis3, Annibale Marinelli 4, Vincenzo Barbera1, Alberto Santoboni1, Moreno Malaguti2, Alessandro Balducci5, Domenico Russo6, Rodolfo Rivera7, Antonio Gorini8, Claudio Ronco9

    (1) UOC Nefrologia e Dialisi, Ospedale “L. Parodi, Delfino”, Colleferro
    (2) UOC Nefrologia e Dialisi, Ospedale “San Paolo”, Civitavecchia
    (3) UOC Nefrologia, Dialisi e Trapianto, Ospedale “V. Fazzi”, Lecce
    (4) UOC Nefrologia e Dialisi “Ospedali Riuniti”, Anzio
    (5) UOC Nefrologia e Dialisi, Azienda Ospedaliera “San Giovanni, Addolorata”, Roma
    (6) Dipartimento di Nefrologia, Università degli Studi Federico II, Napoli
    (7) Divisione di Nefrologia, Ospedale “San Gerardo”, Monza
    (8) Consultant Nephrologist, Roma
    (9) International Renal Research Institute, Ospedale “San Bortolo”, Vicenza
    A cura del Gruppo di Studio di Cardionefrologia dellaSocietà Italiana di Nefrologia

    Parole chiave: Biomarcatori, Ecocardiografia, Ecografia renale, Insufficienza cardiaca, Insufficienza renale acuta, Malattia renale cronica, Sindrome cardio-renale
    Key words: Acute kidney injury, Biomarkers, Cardio – Renal Syndrome, Chronic Kidney Disease, Echocardiography, Heart failure, Kidney Ultrasound
    Non ci sono commenti
    Figure


    Editor in chief
    dr. Biagio Raffaele Di Iorio
    Co-redattori
    dr.ssa Cristiana Rollino
    dr. Gaetano La Manna
    Redattori associati
    dr. Alessandro Amore
    dr. Antonio Bellasi
    dr. Pino Quintaliani
    dr. Giusto Viglino
    Direttore responsabile
    Fabrizio Vallari
    Segreteria
    gin_segreteria@sin-italy.org
    fax 0825 530360

    © 2013-2024 Società Italiana di Nefrologia — ISSN 1724-5990 — Editore Tesi SpA

    Giornale Italiano di Nefrologia è una testata giornalistica registrata presso il Tribunale di Milano. Autorizzazione n. 396 del 10.12.2013.

    La piattaforma web su cui condividere in maniera semplice, efficace ed interattiva le conoscenze nefrologiche attraverso la pubblicazione online di documenti multimediali.

    INFORMATIVA

    NephroMEET accoglie come documenti con marchio SIN quelli approvati da: Comitati e Commissioni ufficiali SIN, Gruppi di Studio SIN, Sezioni Regionali/Interregionali SIN.

    Il Consiglio Direttivo SIN si riserva inoltre la facoltà di certificare con marchio SIN altri documenti qualora lo ritenga opportuno.

    Gli Autori si assumono in ogni caso la responsabilità dei contenuti pubblicati.

    I contenuti pubblicati sono riservati ad un pubblico esperto nel settore medico-scientifico.

    Seguici su Twitter

    Developer e partner tecnologico:
    TESISQUARE®

    Assistenza telefonica allo 0172 476301
    o via mail

    Cookie Policy