Attenzione! Per visualizzare al meglio il sito e usufruire di tutte le funzionalità messe a disposizione
si consiglia di aggiornare la versione in uso di Internet Explorer alla versione 8 o superiore. Grazie!

La rete delle conoscenze nefrologiche

Home > Articoli originali

Pubblicato il 8 maggio 2015

Fisiologia dell’handling renale dell’acido urico

Fisiopatologia dell’handling renale dell’acido urico

Renal handling of uric acid

Fisiopatologia dell’handling renale dell’acido urico

Renal handling of uric acid

Miriam Zacchia1, Giovanna Capolongo1, Luca Rinaldi1, Giovambattista Capasso1

(1) Cattedra di Nefrologia, Seconda Università di Napoli

Corrispondenza a: Miriam Zacchia; Cattedra di Nefrologia, Seconda Università di Napoli Via Pansini,5, Edificio 17, Nuovo Policlinico 80131 Napoli ; Tel:+39 081 5666797 Fax:+39 081 5666652 Mail: miriamzacchia@virgilio.it

Abstract

L’acido urico è il prodotto terminale del catabolismo delle purine nell’uomo. La sua concentrazione plasmatica è il risultato di un intricato e parzialmente conosciuto complesso di processi che ne regolano la produzione epatica e l’escrezione renale ed intestinale. I livelli plasmatici variano tra 3 e 7 mg/dl, e sono particolarmente influenzabili da un’alimentazione ricca in purine, dall’alto turn-over cellulare e dalla riduzione dell’escrezione renale. Il rene svolge un ruolo importante nell’omeostasi dell’acido urico, e spesso la patogenesi dell’iperuricemia correla con una riduzione della quota escreta dal rene, come accade in corso di insufficienza renale o in seguito all’uso di alcuni farmaci che ne stimolano il riassorbimento o ne inibiscono la secrezione. Fisiologicamente la filtrazione glomerulare dell’urato è pari quasi al 100%; a livello del tubulo prossimale si verificano intensi processi di riassorbimento e secrezione, che determinano una frazione di escrezione finale pari al 6-12% della quota filtrata. Il presente lavoro riassume le più recenti evidenze scientifiche che hanno permesso, negli ultimi 20 anni, di caratterizzare dal punto di vista molecolare l’handling renale dell’acido urico. I progressi delle conoscenze nel campo della fisiologia hanno prodotto importanti implicazioni a livello clinico, nella comprensione del meccanismo d’azione di alcuni farmaci e nelle associazioni tra alcuni polimorfismi genetici e i livelli di uricemia negli studi di popolazione, aprendo nel contempo la strada a nuove prospettive terapeutiche.

Abstract

Uric acid is the end product of purine catabolism in humans. The plasma concentration is the result of an intricate and partially known process that regulates its synthesis and excretion. Plasma levels range from 3 to 7 mg/dl, and are influenced by diet rich in purines, cell turnover and reduced renal excretion. The kidney plays a pivotal role in acid uric homeostasis, and the pathogenesis of hyperuricemia often correlates with a reduction in the amount of renal excretion, as happens in chronic kidney failure or as a result of certain drugs. Physiologically, uric acid is freely filtered by glomerulus; along the proximal tubule it is reabsorbed and secreted, with a fractional excretion equal to 6-12%. During the last decades many efforts have led to a better understanding of the molecular basis of renal urate handling. The present study analyzes the most recent evidences that demonstrate the role of several proteins involved in urate transport. Understanding this physiological mechanisms had a great impact in clinical practice, providing advances in our knowledge of drug action and genetic associations in hyperuricemic patients; contextually it opened new avenues for drug development.

BibliografiaReferences

[1] Watanabe S, Kang DH, Feng L et al. Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity. Hypertension 2002 Sep;40(3):355-60 (full text)

[2] Wu XW, Muzny DM, Lee CC et al. Two independent mutational events in the loss of urate oxidase during hominoid evolution. Journal of molecular evolution 1992 Jan;34(1):78-84

[3] Christen P, Peacock WC, Christen AE et al. Urate oxidase in primate phylogenesis. European journal of biochemistry / FEBS 1970 Jan;12(1):3-5

[4] Johnson RJ, Segal MS, Srinivas T et al. Essential hypertension, progressive renal disease, and uric acid: a pathogenetic link? Journal of the American Society of Nephrology : JASN 2005 Jul;16(7):1909-19 (full text)

[5] Matsuo H, Takada T, Ichida K et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Science translational medicine 2009 Nov 4;1(5):5ra11 (full text)

[6] Ichida K, Matsuo H, Takada T et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nature communications 2012 Apr 3;3:764

[7] Nakayama A, Matsuo H, Shimizu T et al. Common missense variant of monocarboxylate transporter 9 (MCT9/SLC16A9) gene is associated with renal overload gout, but not with all gout susceptibility. Human cell 2013 Dec;26(4):133-6

[8] Capasso G, Jaeger P, Robertson WG et al. Uric acid and the kidney: urate transport, stone disease and progressive renal failure. Current pharmaceutical design 2005;11(32):4153-9

[9] Guggino SE, Aronson PS Paradoxical effects of pyrazinoate and nicotinate on urate transport in dog renal microvillus membranes. The Journal of clinical investigation 1985 Aug;76(2):543-7

[10] Enomoto A, Kimura H, Chairoungdua A et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 2002 May 23;417(6887):447-52

[11] Ikarashi R, Shibasaki K, Yamaguchi A et al. Immunohistochemical studies of organic anion transporters and urate transporter 1 expression in human salivary gland. Acta odontologica Scandinavica 2013 Mar;71(2):312-6

[12] Price KL, Sautin YY, Long DA et al. Human vascular smooth muscle cells express a urate transporter. Journal of the American Society of Nephrology : JASN 2006 Jul;17(7):1791-5 (full text)

[13] Ichida K, Hosoyamada M, Hisatome I et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. Journal of the American Society of Nephrology : JASN 2004 Jan;15(1):164-73 (full text)

[14] Jeannin G, Chiarelli N, Gaggiotti M et al. Recurrent exercise-induced acute renal failure in a young Pakistani man with severe renal hypouricemia and SLC2A9 compound heterozygosity. BMC medical genetics 2014 Jan 7;15:3 (full text)

[15] Sato M, Wakayama T, Mamada H et al. Identification and functional characterization of uric acid transporter Urat1 (Slc22a12) in rats. Biochimica et biophysica acta 2011 Jun;1808(6):1441-7 (full text)

[16] Doblado M, Moley KH Facilitative glucose transporter 9, a unique hexose and urate transporter. American journal of physiology. Endocrinology and metabolism 2009 Oct;297(4):E831-5 (full text)

[17] Vitart V, Rudan I, Hayward C et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nature genetics 2008 Apr;40(4):437-42

[18] Stark K, Reinhard W, Neureuther K et al. Association of common polymorphisms in GLUT9 gene with gout but not with coronary artery disease in a large case-control study. PloS one 2008 Apr 9;3(4):e1948 (full text)

[19] Matsuo H, Chiba T, Nagamori S et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. American journal of human genetics 2008 Dec;83(6):744-51 (full text)

[20] Anzai N, Ichida K, Jutabha P et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. The Journal of biological chemistry 2008 Oct 3;283(40):26834-8 (full text)

[21] Preitner F, Bonny O, Laverrière A et al. Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proceedings of the National Academy of Sciences of the United States of America 2009 Sep 8;106(36):15501-6 (full text)

[22] Augustin R, Carayannopoulos MO, Dowd LO et al. Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking. The Journal of biological chemistry 2004 Apr 16;279(16):16229-36 (full text)

[23] Kimura T, Takahashi M, Yan K et al. Expression of SLC2A9 isoforms in the kidney and their localization in polarized epithelial cells. PloS one 2014;9(1):e84996 (full text)

[24] Reginato AM, Mount DB, Yang I et al. The genetics of hyperuricaemia and gout. Nature reviews. Rheumatology 2012 Oct;8(10):610-21

[25] Dehghan A, Köttgen A, Yang Q et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 2008 Dec 6;372(9654):1953-61

[26] Yamagishi K, Tanigawa T, Kitamura A et al. The rs2231142 variant of the ABCG2 gene is associated with uric acid levels and gout among Japanese people. Rheumatology (Oxford, England) 2010 Aug;49(8):1461-5 (full text)

[27] Woodward OM, Köttgen A, Coresh J et al. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proceedings of the National Academy of Sciences of the United States of America 2009 Jun 23;106(25):10338-42 (full text)

[28] Noguchi K, Katayama K, Sugimoto Y et al. Human ABC transporter ABCG2/BCRP expression in chemoresistance: basic and clinical perspectives for molecular cancer therapeutics. Pharmacogenomics and personalized medicine 2014;7:53-64 (full text)

[29] Murer H, Hernando N, Forster I et al. Proximal tubular phosphate reabsorption: molecular mechanisms. Physiological reviews 2000 Oct;80(4):1373-409 (full text)

[30] Miyamoto K, Haito-Sugino S, Kuwahara S et al. Sodium-dependent phosphate cotransporters: lessons from gene knockout and mutation studies. Journal of pharmaceutical sciences 2011 Sep;100(9):3719-30

[31] Jutabha P, Anzai N, Kitamura K et al. Human sodium phosphate transporter 4 (hNPT4/SLC17A3) as a common renal secretory pathway for drugs and urate. The Journal of biological chemistry 2010 Nov 5;285(45):35123-32 (full text)

[32] Ahn SY, Nigam SK Toward a systems level understanding of organic anion and other multispecific drug transporters: a remote sensing and signaling hypothesis. Molecular pharmacology 2009 Sep;76(3):481-90 (full text)

[33] Motohashi H, Sakurai Y, Saito H et al. Gene expression levels and immunolocalization of organic ion transporters in the human kidney. Journal of the American Society of Nephrology : JASN 2002 Apr;13(4):866-74 (full text)

[34] Sekine T, Miyazaki H, Endou H et al. Molecular physiology of renal organic anion transporters. American journal of physiology. Renal physiology 2006 Feb;290(2):F251-61 (full text)

[35] Bleasby K, Castle JC, Roberts CJ et al. Expression profiles of 50 xenobiotic transporter genes in humans and pre-clinical species: a resource for investigations into drug disposition. Xenobiotica; the fate of foreign compounds in biological systems 2006 Oct-Nov;36(10-11):963-88

[36] Hagos Y, Stein D, Ugele B et al. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. Journal of the American Society of Nephrology : JASN 2007 Feb;18(2):430-9 (full text)

[37] Köttgen A, Albrecht E, Teumer A et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nature genetics 2013 Feb;45(2):145-54

[38] Flynn TJ, Phipps-Green A, Hollis-Moffatt JE et al. Association analysis of the SLC22A11 (organic anion transporter 4) and SLC22A12 (urate transporter 1) urate transporter locus with gout in New Zealand case-control sample sets reveals multiple ancestral-specific effects. Arthritis research & therapy 2013;15(6):R220 (full text)

[39] Sakiyama M, Matsuo H, Shimizu S et al. A common variant of organic anion transporter 4 (OAT4/SLC22A11) gene is associated with renal underexcretion type gout. Drug metabolism and pharmacokinetics 2014;29(2):208-10 (full text)

[40] Lipkowitz MS, Leal-Pinto E, Cohen BE et al. Galectin 9 is the sugar-regulated urate transporter/channel UAT. Glycoconjugate journal 2004;19(7-9):491-8

[41] Lipkowitz MS, Leal-Pinto E, Rappoport JZ et al. Functional reconstitution, membrane targeting, genomic structure, and chromosomal localization of a human urate transporter. The Journal of clinical investigation 2001 May;107(9):1103-15

[42] Spitzenberger F, Graessler J, Schroeder HE et al. Molecular and functional characterization of galectin 9 mRNA isoforms in porcine and human cells and tissues. Biochimie 2001 Sep;83(9):851-62

[43] Wu X, Wakamiya M, Vaishnav S et al. Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. Proceedings of the National Academy of Sciences of the United States of America 1994 Jan 18;91(2):742-6 (full text)

[44] Ames BN, Cathcart R, Schwiers E et al. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proceedings of the National Academy of Sciences of the United States of America 1981 Nov;78(11):6858-62

[45] Gagliardi AC, Miname MH, Santos RD et al. Uric acid: A marker of increased cardiovascular risk. Atherosclerosis 2009 Jan;202(1):11-7

[46] Johnson RJ, Lanaspa MA, Gaucher EA et al. Uric acid: a danger signal from the RNA world that may have a role in the epidemic of obesity, metabolic syndrome, and cardiorenal disease: evolutionary considerations. Seminars in nephrology 2011 Sep;31(5):394-9

[47] Johnson RJ, Sánchez-Lozada LG, Mazzali M et al. What are the key arguments against uric acid as a true risk factor for hypertension? Hypertension 2013 May;61(5):948-51 (full text)

[48] Shi Y, Evans JE, Rock KL et al. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 2003 Oct 2;425(6957):516-21

[49] Martinon F, Pétrilli V, Mayor A et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006 Mar 9;440(7081):237-41

[50] Kingsbury SR, Conaghan PG, McDermott MF et al. The role of the NLRP3 inflammasome in gout. Journal of inflammation research 2011;4:39-49 (full text)

[51] Moe OW Uric acid nephrolithiasis: proton titration of an essential molecule? Current opinion in nephrology and hypertension 2006 Jul;15(4):366-73

[52] Feig DI, Mazzali M, Kang DH et al. Serum uric acid: a risk factor and a target for treatment? Journal of the American Society of Nephrology : JASN 2006 Apr;17(4 Suppl 2):S69-73 (full text)

[53] Mazzali M, Hughes J, Kim YG et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 2001 Nov;38(5):1101-6 (full text)

[54] Culleton BF, Larson MG, Kannel WB et al. Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study. Annals of internal medicine 1999 Jul 6;131(1):7-13

[55] Fang J, Alderman MH Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971-1992. National Health and Nutrition Examination Survey. JAMA 2000 May 10;283(18):2404-10

[56] Zhao G, Huang L, Song M et al. Baseline serum uric acid level as a predictor of cardiovascular disease related mortality and all-cause mortality: a meta-analysis of prospective studies. Atherosclerosis 2013 Nov;231(1):61-8

[57] Tamariz L, Harzand A, Palacio A et al. Uric acid as a predictor of all-cause mortality in heart failure: a meta-analysis. Congestive heart failure (Greenwich, Conn.) 2011 Jan-Feb;17(1):25-30

[58] Kok VC, Horng JT, Chang WS et al. Allopurinol therapy in gout patients does not associate with beneficial cardiovascular outcomes: a population-based matched-cohort study. PloS one 2014;9(6):e99102 (full text)

Per visualizzare l'intero documento devi essere registrato e aver eseguito la con utente e password.

Versione PDF
Per visualizzare l'intero documento devi essere registrato e aver eseguito la con utente e password.
Contenuti articolo
    release  1
    pubblicata il  08 maggio 2015 
    Da

    Miriam Zacchia1, Giovanna Capolongo1, Luca Rinaldi1, Giovambattista Capasso1

    (1) Cattedra di Nefrologia, Seconda Università di Napoli

    Corrispondenza a: Miriam Zacchia; Cattedra di Nefrologia, Seconda Università di Napoli Via Pansini,5, Edificio 17, Nuovo Policlinico 80131 Napoli ; Tel:+39 081 5666797 Fax:+39 081 5666652 Mail: miriamzacchia@virgilio.it

    Parole chiave: acido urico, riassorbimento, secrezione, trasporto renale
    Key words: reabsorption, secretion, transport, uric acid
    Non ci sono commenti
    Figure


    Editor in chief
    dr. Biagio Raffaele Di Iorio
    Co-redattori
    dr.ssa Cristiana Rollino
    dr. Gaetano La Manna
    Redattori associati
    dr. Alessandro Amore
    dr. Antonio Bellasi
    dr. Pino Quintaliani
    dr. Giusto Viglino
    Direttore responsabile
    Fabrizio Vallari
    Segreteria
    gin_segreteria@sin-italy.org
    fax 0825 530360

    © 2013-2024 Società Italiana di Nefrologia — ISSN 1724-5990 — Editore Tesi SpA

    Giornale Italiano di Nefrologia è una testata giornalistica registrata presso il Tribunale di Milano. Autorizzazione n. 396 del 10.12.2013.

    La piattaforma web su cui condividere in maniera semplice, efficace ed interattiva le conoscenze nefrologiche attraverso la pubblicazione online di documenti multimediali.

    INFORMATIVA

    NephroMEET accoglie come documenti con marchio SIN quelli approvati da: Comitati e Commissioni ufficiali SIN, Gruppi di Studio SIN, Sezioni Regionali/Interregionali SIN.

    Il Consiglio Direttivo SIN si riserva inoltre la facoltà di certificare con marchio SIN altri documenti qualora lo ritenga opportuno.

    Gli Autori si assumono in ogni caso la responsabilità dei contenuti pubblicati.

    I contenuti pubblicati sono riservati ad un pubblico esperto nel settore medico-scientifico.

    Seguici su Twitter

    Developer e partner tecnologico:
    TESISQUARE®

    Assistenza telefonica allo 0172 476301
    o via mail

    Cookie Policy